

InnovEOX

Training a new generation of researchers in **Innov**ative **E**lectrochemical **OX**idation processes

EU H2020 MSCA-ETN

Project Introduction

InnovEOX at a glance

InnovEOX Training a new generation of researchers in Innovative Electrochemical OXidation processes

Our purpose

The presence of hazardous micro-pollutants in water streams has become a **worldwide concern**

Advanced Oxidation Processes (AOPs) are a well-known class of technologies for the degradation of micropollutants in water, among which Electrochemical AOPs (eAOPs) stand out as a promising sustainable and effective solution

INNOVEOX

tive Electrochemical OXidation processe

Our goal

Training of a new generation of researchers in Innovative Electrochemical OXidation processes for the removal and analysis of micro-pollutants in water streams

InnovEOX

Training a new generation of researchers in Innovative Electrochemical OXidation processes

Beneficiaries & Partners

INNOVEOX

vative Electrochemical OXidation processes

Organization

Training a new generation of researchers in Innovative Electrochemical OXidation processes

Early-Stage Researchers

WP 1

WP 2

Sara Feijoo Moreira

ESR 1

ESR 2

Amir Jabbari Singh Matharoo

ESR 3

WP 3

Nadia Gadi

ESR 4

Agha Zeeshan Ali

ESR 5

Rebecca Dhawle

ESR 6

Zhongda Liu

ESR 7

Izba Ali

ESR 8

WP 4

Gema Amaya

ESR 14

Barbara Brusca

ESR 15

Quynh Khoa Pham

Allisson Barros de Souza

ESR 10

Elena Bandini

ESR 11

Ardiana Kajtazi

ESR 12

Rafael Reis

ESR 13

Research topics

Electrochemical AOP with *in-situ* generation of sulfate radicals

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Sara Feijoo Moreira **Main Supervisor:** Prof. Raf Dewil **Host:** KU Leuven

ESR 1

Sulfate-radical Advanced Oxidation Processes (SR-AOPs) are a novel AOP approach where SO_4^{-} radicals are promoted over conventional HO $^{-}$ as oxidizing agent of recalcitrant pollutants in wastewater.

$$SO_4^{2-} \rightarrow SO_4^{\bullet-} + e^-$$

Why is it relevant?

Generating sulfate radicals from sulfate ions already present in the wastewater avoids the need for additional chemicals and the generation of waste, while operating at ambient conditions.

It is a more environmentally-friendly and energy-efficient treatment

Manipulation of plasma species generation in an AOP

MSCAETN INNOVEOX Training a new genera Innovative Electroche

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Gagandeep Singh Matharoo **Main Supervisor:** Prof. James Walsh **Host:** University of Liverpool

Concept

ESR2

The energy of electrons in the plasma dictate its chemical composition, and it can be controlled to optimize production of reactive species

Main objective

To test the hypothesis that nanosecond pulsed excitation can exert a level of control over electron energy and therefore control plasma chemistry

 $\begin{array}{l} \mathrm{e} + \mathrm{N}_2 \rightarrow \mathrm{N}_2^+ + \mathrm{e} + \mathrm{e} \\ \mathrm{e} + \mathrm{N} \rightarrow \mathrm{N}(^2\mathrm{D}) + \mathrm{e} \\ \mathrm{e} + \mathrm{N} \rightarrow \mathrm{N}^+ + \mathrm{e} + \mathrm{e} \\ \mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{O} + \mathrm{O} + \mathrm{e} \\ \mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{O}(^1\mathrm{D}) + \mathrm{O} + \mathrm{e} \\ \mathrm{e} + \mathrm{O}_2 \rightarrow \mathrm{O}_2(a\ ^1\Delta) + \mathrm{e} \end{array}$

 $\begin{array}{l} 1\times 10^{-16}\varepsilon^{1.90}\exp(-14.6/\varepsilon) \\ 5.06\times 10^{-15}\exp(-10.8/\varepsilon^{3.95}) \\ 1.45\times 10^{-17}\varepsilon^{2.58}\exp(-8.54/\varepsilon) \\ 2.03\times 10^{-14}\varepsilon^{-0.10}\exp(-8.47/\varepsilon) \\ 1.82\times 10^{-14}\varepsilon^{-0.13}\exp(-10.7/\varepsilon) \\ 1.04\times 10^{-15}\exp(-2.59/\varepsilon) \end{array}$

InnovEOX Fraining a new generation of researchers in

ESR: Amir Jabbari Main Supervisor: Prof. James Walsh Host: University of Liverpool

Enhancing mass transport in plasma AOP via liquid spray reactor

Challenges:

Enhancing the mass transfer and overcoming the disruption caused by interation of liquid and plasma

How?

Plasma source

Plasma volume Plasma stability

Spray-type reactor

Flow rate Aerosol size

Techniques

- Particle Imaging Velocimetry (PIV) system
- Fluid-dynamics properties
- Computational fluid dynamics modelling
- Characterisation

Reactor and process design for industrial implementation of eAOP

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Nadia Gadi Main Supervisor: Nadine Boelee Host: Nijhuis Industries

ESR4

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Agha Zeeshan Ali **Main Supervisor:** Prof. J.P. van der Hoek **Host:** TU Delft

Catalyst evaluation for anode selectivity in photo-electrochemical system

ESR5

Goals

- Use of Bismuth Vanadate (BiVO₄) as photocatalyst
- Fabrication & testing of BiVO₄ based photoanodes
- Identifying the degradation pathways of micropollutants
- Integration of photoanodes in a reactor design

Aim: Use of Solar Energy

Hybrid photo-electrochemical processes

raining a new generation of researchers in nnovative Electrochemical OXidation processes

ESR: Rebecca Dhawle **Main Supervisor:** Prof. Dionisios Mantzavinos **Host:** University of Patras

GOALS

- Immobilization of TiO₂ on anodes and sensitization to visible light
- Enhance degradation in comparison to individual processes
- \Box Cathode selection to promote H₂O₂ production
- $\hfill\square$ Compare the H_2O_2 production and process efficiency with different cathodes
- Kinetic analysis of the process to identify the by products

Electrochemical modification of catalytic activity for water treatment

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Zhongda Liu Main Supervisor: Prof. Alexandros Katsaounis Host: University of Patras

(Electrochemical Promotion of Catalysis)

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Izba Ali Main Supervisor: Kwinten Van Eyck Host: InOpSys

In-situ production of H_2O_2 at the cathode in catalytic wet air oxidation

Background

The formation of H_2O_2 is dependent of the process conditions in the system, and very specifically, on the **composition of the cathode**. In general, **carbonaceous cathodes** are beneficial for H_2O_2 generation.

Goals

- AOP process based on H_2O_2 will be further developed and optimized.
- A beneficial **catalytic coating** for the cathode will be designed, for the production of H_2O_2 .
- Influential parameters will be determined and an optimization of the process will be carried out.

InnovEOX

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Quynh Khoa Pham Main Supervisor: François Lestremau Host: INERIS

Evaluating sample preparation methods to monitor eAOP degradation products

Multidimensional LC separations with MS as a generic method to study eAOP degradation products

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Allisson Barros de Souza **Main Supervisor:** Tom Van de Goor **Host:** Agilent

InnovEOX

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Elena Bandini **Main Supervisor:** Prof. Frédéric Lynen **Host:** University of Ghent

Evaluating alternative chromatographic strategies for enhanced eAOPs analysis

TRLC-RID

Pure water as mobile phase with thermoresponsive polymer based colums

Universal detection with Refractive Index Detector

GCxGC image recognition

Functional group type classification using deep learning methods

Construction of Neural Networks for the interpretation of contour plots Combination of chromatographic and spectroscopic data to enhance the identification of eAOP products

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Ardiana Kajtazi **Main Supervisor:** Prof. Frédéric Lynen **Host:** University of Ghent

ESR12

Goals

1. Setting up LC-MS and GC-MS platforms for analysis of advanced oxidation products.

2. Combining *in silico* prediction of retention times to enhance the quality of the predicted elemental compositions.

3. Developing comprehensive multidimensional platforms for analysis of advanced oxidation products.

4. Developing phase optimized liquid chromatography (POPLC) for small molecule analysis.

Toxicity assessment of degradation products using zebrafish and advanced LC-MS techniques

Training a new generation of researchers in Innovative Electrochemical OXidation processes

ESR: Rafael Reis Main Supervisor: Prof. Deirdre Cabooter Host: KU Leuven

Single heart-cutting multidimensional UHPLC

 Development of robust, easy-to-operate multi-dimensional LC techniques for the analysis of complex samples;
Application of the developed methods to samples generated during this project by other partners in the consortium and also in local WWTP's and surface waters;
Toxicological assessment of the identified compounds using zebrafish models.

Danio rerio

Zebrafish test plates

Training a new generation of researchers in Innovative Electrochemical OXidation processe

ESR: Barbara Brusca Main Supervisor: Prof. Lise Appels Host: KU Leuven

Combined electrochemical oxidation and biological wastewater treatment

ESR14

GOAL Implementation of the eAOP-techniques developed in the other WPs in biological wastewater treatment processes.

Partial eAOP degradation

Micropollutants are transformed into biodegradable components Toxic components may still be present → affect the biological step

Evaluation of the influence of the eAOP treatments and of the formed degradation products on subsequent aerobic and anaerobic treatments

eAOP + aerobic treatment: already researched

Partial oxidation impact on the long term is unknown Toxicity reduction of the influent

eAOP + anaerobic treatment: more effective biodegradation "totally new concept "

H₂ will end up in the biogas

 O_2 will create micro-aerobic conditions in the reactor (reducing unwanted H_2S) Energy neutral or even an energy producer

Training a new generation of researchers in

ESR: Gema Amaya **Main Supervisor:** Prof. Paola Lettieri **Host:** University College London

Life-cycle assessment & cost analysis of emerging eAOP technologies

- Which strategy is more sustainable?
- Which technology could be implemented full scale?
- What is the **environmental impact** of its implementation?
- Is it feasible?

ESR15

Questions?

This project has received funding from the European Union's EU Framework Programme for Research and Innovation Horizon 2020 under Grant Agreement No 861369.